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Multiplicity of ordered phases in frustrated systems obtained from hard-spin mean-field theory
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Random quenched dilution of the triangular-lattice antiferromagnetic Ising model locally relieves frustration,
leading to ordering phenomena. We have studied this system, under such dilution of one sublattice, using
hard-spin mean-field theory. After a threshold dilution, two sublattices develop nonzero magnetizations of
equal magnitude and opposite signs, as all three sublattices exhibit spin-glass order. In this phase, multiple sets
of ordered solutions occur. A phase diagram is obtained in dilution fraction and temperature.

PACS numbg(s): 05.70.Fh, 75.10.Nr, 64.70.Pf, 75.30.Cr

A “rugged free-energy landscape” is often mentioned asmethod has yielded, for example, the lack of order in the
a distinctive characteristic in the discussions of spin-glassindiluted triangular-lattice antiferromagnetic Ising model
systemg1]. Concrete support for such a phenomenon wouldand the ordering that occurs when a uniform magnetic field
derive from multiple solutions, not related to each other by das applied to the system, in a quantitatively accurate phase
global symmetry, of self-consistent order-parameter equadiagram in the temperature versus magnetic field variables
tions. This has not been previously obtained for any systerf2z—5,8,9. Hard-spin mean-field theory also yields the lack of
with a realistic spatial connectivity. In this work, we do find order in the one-dimensional Ising ferromagnet and the oc-
such multiple solutions, not related by global symmetry, in acurrence of order in the two-dimensional Ising ferromagnet,
random frustrated system with realistic spatial connectivitythe latter with an onset temperature improved over usual
namely, the quench-diluted triangular-lattice antiferromag-mean-field theory4]. Hard-spin mean-field theory has also
netic Ising model, studied via the closed-form implementa-been successfully applied to complicated systems that exhibit
tion of hard-spin mean-field theof2—12]. a variety of ordering behaviors, such as three-dimensional

The antiferromagnetic Ising model, with Hamiltonian stacked frustrated systerf®,6] and higher-spin systeng].

The self-consistent equation for local magnetizations in
hard-spin mean-field theory is

—BH=—J<Z> ss;, J=0, (1)

ij

wheres,= =1 at each sité of a triangular lattice andij) m=>, [H p(m;;s)) tanf( -3, sj,), 2
indicates summation over nearest-neighbor pairs of sites, is st L] i’

fully frustrated[13]: In each elementary triangle, one of the

three nearest-neighbor antiferromagnetic interactions is di%/_vhere the product ovgrand sum ovei’ run over all non-
satlsﬁed when the energy is minimized. Th|sllea.ds, MAacrog; ted sites neighboring siie and the single-site spin prob-
scopically, to a highly degenerate system that is disordered %tbility distributionp(m; :5,) is (1+m;s;)/2. The outer sum-
all nonzero (1J>>0) temperature¢ld]. Random quenched mation is over thet1 values of the spins at the undiluted

dilution of the system relieves the frustration at random Io—Sites neighboring site Thus, the spin at each site feels the

calities and can be expected to lead to ordering phenqm.enghti-aligning field due to the ful(i.e., hard spin of each of

: ) A . s neighbors. EquatiofR) is a set of coupled equations for
8]; dae”r[TE:]e eV\/SelJ?:?r:t:IS(i:(jereSr fﬁ:';’;:zgtrlz hl?esn'gr?elzaéﬁﬂt;ﬂn(;ﬂﬂzall the local magnetizations and is solved iteratively for a
sites of oﬁe of three sublattices A;:tler a threshold dilution given realization of dilution in a finite but large system.
the system exhibits uniform and.o osite magnetizations i’n Alternatively, a further approximatioris to impose sub-
two sﬁblattices and spin-glass ordeprpi e,s ing frozen in ranlgtticewise uniformity, m;=m, for each sublattice«

o nd Spin-g ‘er, 1.€., Spins =a,b,c, and to average the self-consistent equation over all
dom directions, in the quench-diluted sublattice. A phase /.~ ST

. . . ) . S . fealizations of quenched site dilution,
diagram is obtained in the variables of dilution fraction and
temperature. Within the ordered phase, for a fixed dilution
tan}'( —JE sj,)}.
J'!

fraction and temperature, a multiplicity of solutions, distin-
=2} Q({n})[Z [TJ[ p(m;;s;)
7
()

guished by different values of the local and global order M 5
parameters, is obtained to the hard-spin mean-field equa-
tions.

We use hard-spin mean-field theory, a method which is
almost as simply enunciated as usual mean-field theory, buih Eg. (3), the parentheses enclose the right-hand side of Eq.
which conserves frustratiof2—12. Consequently, this (2). This is summed over the®2ossible quenched environ
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FIG. 2. Zero-temperature sublattice magnetizations and spin-

FIG. 1. Finite-temperature order in the random quench-dilutedylass order parameters from hard-spin mean-field theory. The sub-
triangular-lattice antiferromagnetic Ising modél) Magnetizations  lattice magnetization$a) do not saturate at zero-temperature, ex-
of the two undiluted sublattices from hard-spin mean-field theorycept for the full dilution(hexagonal latticelimit. The dashed curve
(solid curvey. The three curves correspond top in (a) is the result of the further approximation of E). The
=0.75,0.5,0.093 75, which can be identified by the respectively inzero-temperature spin-glass ordé) and(c)] is maximal at inter-
creasing critical temperatures, i.e., increasiraxis intercepts. The mediate dilutions. Multiple solutions of the hard-spin mean-field
result from the further approximation of E€B) is given with the  theory equations are seen, in addition to the most stable set in
dashed curve. The quench-diluted sublattice has zero magnetizdepicted in Fig. 1(For each solution, the same symbol is used in
tion. (b) Spin-glass order parameter of the undiluted sublatticesFigs. 2—6. This figure is obtained for 1~0.0001, in a 3& 30
The curves, again distinguished by their respectively increasingystem.
critical temperatures, are for p=0.9375,0.890625,0.75,
0.625,0.5,0.140 625,0.093 75. Note the reentrant behavior in the
magnitudes, for high dilutiongc) Spin-glass order parameter of the
guench-diluted sublattice. The valuesmfre as in(b). Here, the mi:[H
spin-glass order fop=0.093 75 is away from zero only at higher ]
temperatures. The spin-glass order fior 0.140 625 exhibits dou-
bly reentrant behavior. 'I_'he solid curves are for a fixed realization of xtan}‘( —JE 7S, ,) , (4
the quenched disorder in a 2424 system. g

> alpim) > p(my;s)
=0,1 sj:rl

7

. _ where the product ovgrand sum ovej’ run over all sites
ments{ 7} of sitei. Each quenched environmefg} occurs  aighnoring site, the single-site quenched-dilution probabil-
with a probability Q composed of six factors;, with g ity distribution q(p;;=;) is 1—p;—n;(1—2p;), and p;
=(1—pj) for each quench-diluted neighbpandq;=p; for ~ =p,_ for each sublatticer=a,b,c. Equation(3) or, equiva-
each undiluted neighbgr Equation(3) can be compactly lently, Eq. (4) is solved for m,,m,,m.) for given
rewritten as (PaPb,Pc)-
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FIG. 3. Phase diagram of the random quench-diluted triangular- §
lattice antiferromagnetic Ising model. The solid curves show the o0
phase boundaries obtained by hard-spin mean-field theory for two ,,': 0.2
realizations of quenched dilutions of a)224 system. The losanges %

show the result from averaging over 15 such realizations. The
dashed curve is the result from the further approximation of( 8.
this curve is given analytically by Edq7).

Whereas hard-spin mean-field thedBqg. (2)] yields the
variations in the local magnetizations within each sublattice
due to differently quenched local environments, the imple-
mentation of Eq.3) is a further approximation over hard-
spin mean-field theory: While still incorporating frustration,
it imposes sublatticewise uniform magnetizations. Equation
(3) is a set of three coupled equations, whereas(Egis a

Spin-glass q,

set of N coupled equations, wheltis the size of the system. . . . . . /'
Upon random quenched dilution of one sublattice, the 0 0 05 1 L5

frustrated triangular-lattice Ising model does indeed show ' '

long-range order, as for example depicted in Figs. 1. The two Temperature, 1/J

undiluted sublattice¢labeled a and b which are now sub-
ject to random unfrustrated localities at the dilution points of
the other sublatticélabeled ¢, develop nonzero sublattice-
averaged magnetizations),=—m,, at low temperatures.
For low dilutions, these magnetizatiofisig. 1(a)] show an
initial slow growth at onset as temperature is lowered and d
not saturate at zero temperature. The diluted sublattice c
also subject to local liftings of frustration, due to the spatially -
nonuniform magnetizations of sublattices a and b, but this i%:'gs' 4b) and Z.C)' . - .
a secondary and, therefore, weaker effect, and sublattice ¢ The phase diagram OT the system is shown in Fig. 3 It IS
does not develop a nonzero sublattice-averaged magnetiz?fen that a threghold_ dilution of 0.042 of one sublattice is
tion, m,=0. needed for ordering, i.e., the occupareyas to be below

All three sublattices develop, within the ordered phase,o‘958 for ordering. Figure 3 shows the phase boundaries

nonzero spin-glass ord¢f.6], i.e., randomly frozen order, ggf'znfd fc;r two (;etillzatlonﬁ fOf quenched dllutlonls5of ah
with order parameters system and the result from averaging over 15 suc

realizations. Also shown by the dashed line in Fig. 3 is the
1/2 further approximation of Eq(3). This dashed phase bound-
, (5 ary obeys the equation

FIG. 4. Finite-temperature multiplicity of solutions fop
=0.75, in the 330 system.

creaseson the undiluted sublatticg$ig. 1(b)] and double
6eentrance(increase, decrease, and again increase the
giluted sublattice[Fig. 1(c)]. Maximal zero-temperature
Spin-glass order occurs at intermediate dilutions, as seen in

o=

1 a
— — 2
Na E] (ml ma)

33+ 3p%(1—p)f,+3p(1—p)2f,+(1—p)3fy=4/3, (7
whereN,, is the number of spins of sublattiece Note that, Pt 3pT (1= p)fz* 3p(1=p) T+ (1=p) o @

for the quenched-diluted sublattice, where
1 c 12
| (6)

Cc

q _ f3:(t6+6t4+5t2)/8, f2:(t5+3t3+2t1)/4,
=

f]_:(t4+2t2)/2, f0:t3+t1,
At high dilutions, the spin-glass ordering trend shows reen-
trance (as temperature is lowered, increases and then dewheret,=tanhfJ), and gives a dilution threshold of 0.125.
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FIG. 5. OverlapQ between the different solutiofisee Eq(8a)] FIG. 6. DistanceA between the different solutionsee Eqg.

on the undiluted sublattices, far=0.75. The arrow indicates the (8b)] on the undiluted sublattices, fpr=0.75 . The arrow indicates
onset of order. the onset of order. The inset schematizes the separations between

the different solutions, showing no ultrametricity.

Within the ordered phase, we find that the hard-spin
mean-field equation§2) admit, as seen in Figs. 2 and 4, a 1~
multiplicity of solutions, in addition to the set depicted in AZ\B:_ 2 (miA_ miB)2_ (8b)
Fig. 1. The latter is the most stable solution, in the sense that Na
it has the largest basin of attraction under the iterative solu-
tion of Eq. (2) The other solutions appear at different tem- From AQB in F|g 6, we can deduce the Separation' in
peratures below the onset temperature for the most stab|gcal-order-parameter space, between the different solutions.
solution. Since, in this study, the number of the sets of soluThjs js shown schematically in the inset of the figure. We
tions increased in going from the 2424 system to the pote that the different solutions are not ultrametrically]
30x 30 systen(depicted in Figs. 2 and)4it can be inferred  related, since no isosceles-triangle relations are seen. Thus, it
that the solutions become numerous in the infinite System. may well be that u|trametricity is a property Speciﬁc to the
Figures 5 and 6 depict the overlaps between pairs of sanfinitely connected lattice.

lutions (A,B),
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