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Multiplicity of ordered phases in frustrated systems obtained from hard-spin mean-field theory
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Random quenched dilution of the triangular-lattice antiferromagnetic Ising model locally relieves frustration,
leading to ordering phenomena. We have studied this system, under such dilution of one sublattice, using
hard-spin mean-field theory. After a threshold dilution, two sublattices develop nonzero magnetizations of
equal magnitude and opposite signs, as all three sublattices exhibit spin-glass order. In this phase, multiple sets
of ordered solutions occur. A phase diagram is obtained in dilution fraction and temperature.

PACS number~s!: 05.70.Fh, 75.10.Nr, 64.70.Pf, 75.30.Cr
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A ‘‘rugged free-energy landscape’’ is often mentioned
a distinctive characteristic in the discussions of spin-gl
systems@1#. Concrete support for such a phenomenon wo
derive from multiple solutions, not related to each other b
global symmetry, of self-consistent order-parameter eq
tions. This has not been previously obtained for any sys
with a realistic spatial connectivity. In this work, we do fin
such multiple solutions, not related by global symmetry, i
random frustrated system with realistic spatial connectiv
namely, the quench-diluted triangular-lattice antiferroma
netic Ising model, studied via the closed-form implemen
tion of hard-spin mean-field theory@2–12#.

The antiferromagnetic Ising model, with Hamiltonian

2bH52J(̂
i j &

sisj , J>0, ~1!

wheresi561 at each sitei of a triangular lattice and̂i j &
indicates summation over nearest-neighbor pairs of site
fully frustrated@13#: In each elementary triangle, one of th
three nearest-neighbor antiferromagnetic interactions is
satisfied when the energy is minimized. This leads, mac
scopically, to a highly degenerate system that is disordere
all nonzero (1/J.0) temperatures@14#. Random quenched
dilution of the system relieves the frustration at random
calities and can be expected to lead to ordering phenom
Indeed, a Monte Carlo study with random quenched dilut
of all three sublattices equivalently has indicated spin-gl
order@15#. We consider the random quenched dilution of t
sites of one of three sublattices. After a threshold diluti
the system exhibits uniform and opposite magnetization
two sublattices and spin-glass order, i.e., spins frozen in
dom directions, in the quench-diluted sublattice. A pha
diagram is obtained in the variables of dilution fraction a
temperature. Within the ordered phase, for a fixed dilut
fraction and temperature, a multiplicity of solutions, disti
guished by different values of the local and global ord
parameters, is obtained to the hard-spin mean-field eq
tions.

We use hard-spin mean-field theory, a method which
almost as simply enunciated as usual mean-field theory,
which conserves frustration@2–12#. Consequently, this
PRE 621063-651X/2000/62~2!/1469~4!/$15.00
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method has yielded, for example, the lack of order in
undiluted triangular-lattice antiferromagnetic Ising mod
and the ordering that occurs when a uniform magnetic fi
is applied to the system, in a quantitatively accurate ph
diagram in the temperature versus magnetic field variab
@2–5,8,9#. Hard-spin mean-field theory also yields the lack
order in the one-dimensional Ising ferromagnet and the
currence of order in the two-dimensional Ising ferromagn
the latter with an onset temperature improved over us
mean-field theory@4#. Hard-spin mean-field theory has als
been successfully applied to complicated systems that ex
a variety of ordering behaviors, such as three-dimensio
stacked frustrated systems@2,6# and higher-spin systems@7#.

The self-consistent equation for local magnetizations
hard-spin mean-field theory is

mi5(
$s%

F)
j

p~mj ;sj !G tanhS 2J(
j 8

sj 8D , ~2!

where the product overj and sum overj 8 run over all non-
diluted sites neighboring sitei, and the single-site spin prob
ability distributionp(mj ;sj ) is (11mjsj )/2. The outer sum-
mation is over the61 values of the spins at the undilute
sites neighboring sitei. Thus, the spin at each site feels th
anti-aligning field due to the full~i.e., hard! spin of each of
its neighbors. Equation~2! is a set of coupled equations fo
all the local magnetizations and is solved iteratively for
given realization of dilution in a finite but large system.

Alternatively, a further approximationis to impose sub-
latticewise uniformity, mj5ma for each sublatticea
5a,b,c, and to average the self-consistent equation over
realizations of quenched site dilution,

mi5(
$h%

Q~$h%!H(
$s%

F)
j

p~mj ;sj !G tanhS 2J(
j 8

sj 8D J .

~3!

In Eq. ~3!, the parentheses enclose the right-hand side of
~2!. This is summed over the 26 possible quenched enviro
R1469 ©2000 The American Physical Society
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ments$h% of site i. Each quenched environment$h% occurs
with a probability Q composed of six factorsqj , with qj

5(12pj ) for each quench-diluted neighborj andqj5pj for
each undiluted neighborj. Equation~3! can be compactly
rewritten as

FIG. 1. Finite-temperature order in the random quench-dilu
triangular-lattice antiferromagnetic Ising model:~a! Magnetizations
of the two undiluted sublattices from hard-spin mean-field the
~solid curves!. The three curves correspond top
50.75,0.5,0.093 75, which can be identified by the respectively
creasing critical temperatures, i.e., increasingx-axis intercepts. The
result from the further approximation of Eq.~3! is given with the
dashed curve. The quench-diluted sublattice has zero magne
tion. ~b! Spin-glass order parameter of the undiluted sublattic
The curves, again distinguished by their respectively increas
critical temperatures, are for p50.9375,0.890 625,0.75
0.625,0.5,0.140 625,0.093 75. Note the reentrant behavior in
magnitudes, for high dilutions.~c! Spin-glass order parameter of th
quench-diluted sublattice. The values ofp are as in~b!. Here, the
spin-glass order forp50.093 75 is away from zero only at highe
temperatures. The spin-glass order forp50.140 625 exhibits dou-
bly reentrant behavior. The solid curves are for a fixed realizatio
the quenched disorder in a 24324 system.
mi5F)
j

(
h j 50,1

q~pj ;h j ! (
sj 561

p~mj ;sj !G
3tanhS 2J(

j 8
h j 8sj 8D , ~4!

where the product overj and sum overj 8 run over all sites
neighboring sitei, the single-site quenched-dilution probab
ity distribution q(pj ;h j ) is 12pj2h j (122pj ), and pj
5pa for each sublatticea5a,b,c. Equation~3! or, equiva-
lently, Eq. ~4! is solved for (ma ,mb ,mc) for given
(pa ,pb ,pc).
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FIG. 2. Zero-temperature sublattice magnetizations and s
glass order parameters from hard-spin mean-field theory. The
lattice magnetizations~a! do not saturate at zero-temperature, e
cept for the full dilution~hexagonal lattice! limit. The dashed curve
in ~a! is the result of the further approximation of Eq.~3!. The
zero-temperature spin-glass order@~b! and ~c!# is maximal at inter-
mediate dilutions. Multiple solutions of the hard-spin mean-fie
theory equations are seen, in addition to the most stable se
depicted in Fig. 1.~For each solution, the same symbol is used
Figs. 2–6!. This figure is obtained for 1/J50.0001, in a 30330
system.
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Whereas hard-spin mean-field theory@Eq. ~2!# yields the
variations in the local magnetizations within each sublatt
due to differently quenched local environments, the imp
mentation of Eq.~3! is a further approximation over hard
spin mean-field theory: While still incorporating frustratio
it imposes sublatticewise uniform magnetizations. Equat
~3! is a set of three coupled equations, whereas Eq.~2! is a
set ofN coupled equations, whereN is the size of the system

Upon random quenched dilution of one sublattice,
frustrated triangular-lattice Ising model does indeed sh
long-range order, as for example depicted in Figs. 1. The
undiluted sublattices~labeled a and b!, which are now sub-
ject to random unfrustrated localities at the dilution points
the other sublattice~labeled c!, develop nonzero sublattice
averaged magnetizations,ma52mb , at low temperatures
For low dilutions, these magnetizations@Fig. 1~a!# show an
initial slow growth at onset as temperature is lowered and
not saturate at zero temperature. The diluted sublattice
also subject to local liftings of frustration, due to the spatia
nonuniform magnetizations of sublattices a and b, but thi
a secondary and, therefore, weaker effect, and sublatti
does not develop a nonzero sublattice-averaged magne
tion, mc50.

All three sublattices develop, within the ordered pha
nonzero spin-glass order@16#, i.e., randomly frozen order
with order parameters

qa5F 1

Na
(

i

a

~mi2ma!2G1/2

, ~5!

whereNa is the number of spins of sublatticea. Note that,
for the quenched-diluted sublattice,

qc5F 1

Nc
(

i

c

mi
2G1/2

. ~6!

At high dilutions, the spin-glass ordering trend shows re
trance ~as temperature is lowered, increases and then

FIG. 3. Phase diagram of the random quench-diluted triangu
lattice antiferromagnetic Ising model. The solid curves show
phase boundaries obtained by hard-spin mean-field theory for
realizations of quenched dilutions of a 24324 system. The losange
show the result from averaging over 15 such realizations.
dashed curve is the result from the further approximation of Eq.~3!;
this curve is given analytically by Eq.~7!.
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creases! on the undiluted sublattices@Fig. 1~b!# and double
reentrance~increase, decrease, and again increase! on the
diluted sublattice @Fig. 1~c!#. Maximal zero-temperature
spin-glass order occurs at intermediate dilutions, as see
Figs. 2~b! and 2~c!.

The phase diagram of the system is shown in Fig. 3. I
seen that a threshold dilution of 0.042 of one sublattice
needed for ordering, i.e., the occupancyp has to be below
0.958 for ordering. Figure 3 shows the phase bounda
obtained for two realizations of quenched dilutions of
24324 system and the result from averaging over 15 s
realizations. Also shown by the dashed line in Fig. 3 is
further approximation of Eq.~3!. This dashed phase bound
ary obeys the equation

p3f 313p2~12p! f 213p~12p!2f 11~12p!3f 054/3, ~7!

where

f 35~ t616t415t2!/8, f 25~ t513t312t1!/4,

f 15~ t412t2!/2, f 05t31t1 ,

wheretn[tanh(nJ), and gives a dilution threshold of 0.125

r-
e
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FIG. 4. Finite-temperature multiplicity of solutions forp
50.75, in the 30330 system.
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Within the ordered phase, we find that the hard-s
mean-field equations~2! admit, as seen in Figs. 2 and 4,
multiplicity of solutions, in addition to the set depicted
Fig. 1. The latter is the most stable solution, in the sense
it has the largest basin of attraction under the iterative s
tion of Eq. ~2!. The other solutions appear at different tem
peratures below the onset temperature for the most st
solution. Since, in this study, the number of the sets of so
tions increased in going from the 24324 system to the
30330 system~depicted in Figs. 2 and 4!, it can be inferred
that the solutions become numerous in the infinite system

Figures 5 and 6 depict the overlaps between pairs of
lutions (A,B),

Qa
AB5

1

Na
(

i

a

mi
Ami

B ~8a!

and the distances

FIG. 5. OverlapQ between the different solutions@see Eq.~8a!#
on the undiluted sublattices, forp50.75. The arrow indicates th
onset of order.
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Da
AB5

1

Na
(

i

a

~mi
A2mi

B!2. ~8b!

From Da
AB in Fig. 6, we can deduce the separation,

local-order-parameter space, between the different soluti
This is shown schematically in the inset of the figure. W
note that the different solutions are not ultrametrically@17#
related, since no isosceles-triangle relations are seen. Th
may well be that ultrametricity is a property specific to t
infinitely connected lattice.

We are grateful to A. Erzan for many valuable discu
sions. This research was supported by the Scientific
Technical Research Council of Turkey~TÜBITAK ! and by
the U.S. Department of Energy under Grant No. DE-FG0
92ER45473.

FIG. 6. DistanceD between the different solutions@see Eq.
~8b!# on the undiluted sublattices, forp50.75 . The arrow indicates
the onset of order. The inset schematizes the separations bet
the different solutions, showing no ultrametricity.
.
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@10# G.B. Akgüç and M.C. Yalabık, Phys. Rev. E51, 2636~1995!.
@11# J.L. Monroe, Phys. Lett. A230, 111 ~1997!.
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